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ABSTRACT

Tau method which is an economized polynomial technique for solving ordinary and partial differential
equations with smooth solutions is modified in this paper for easy computation, accuracy and speed. The
modification is based on the systematic use of ‘Catalan polynomial’ in collocation tau method and the
linearizing the nonlinear part by the use of Adomian’s polynomial to approximate the solution of 2-dimentional
Nonlinear Partial differential equation. The method involves the direct use of Catalan Polynomial in the solution
of linearizedPartial differential Equation without first rewriting them in terms of other known functions as
commonly practiced. The linearization process was done through adopting the Adomian Polynomial technique.
The results obtained are quite comparable with the standard collocation tau methods for nonlinear partial
differential equations.

KEYWORDS: Tau method, Collocation tau method, partial differential equation, Catalan Polynomial.
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I. INTRODUCTION

In his memoir of 1938, Lanczos introduced the use of Chebyshev polynomials in relation to the solution of

linear differential equation with polynomial coefficients in terms of finite expansions of the form.
Dy(x) =0 1

Since then scholars have developed this method in different ways and have found a wide field of
applications, because they are specially designed to provide economized representations for considerable
number of functions frequently used in scientific computation (Liu et al. 2003).These are derivable from linear
differential equations with polynomial coefficients. Ortiz and Samara (1984) worked on the solution of PDE’s
with variable coefficient using an operational approach and the result was encouraging .Odekunle(2006) also
used Catalan polynomial basis to find solutions to ordinary differential equation and the result converges faster
than the existing methods. Odekunle et al. (2014) also used Catalan polynomial basis to formulate solution to 2-
dimentional linear PDE’s.

In their own work Sam and Liu (2004) extended the tau collocation method for solving ordinary differential
equation to the solution of partial differential equations defined on a finite domain with initial, boundary and
mixed condition using Chebyshev polynomial as basis function and they arrived at a beautiful result

In this work, we shall follow the approach of Sam and Liu (2004) and Odekunle (2006) to determine the
approximate solution of a 2-dimentional nonlinear partial differential equation on a finite domain using Catalan
polynomial as the perturbation term. We shall also use multiple choice of perturbation term to overcome the
problem of over-determination in the resulting system of equations encountered in collocation tau method. The
conversion of the partial differential equations to system of equation was effectively done using Kronecker
product.

I1. TAU-COLLOCATION METHOD FOR2-DIMENSIONAL LINEAR PDEs
Definition 1: Catalan Polynomial (Odekunle, 2006)

We define Catalan polynomial C, (X)as
o1 (20, .
C.x)=) [— x', 1=0,12,...
w-3 (7
Where
[ i! .
=— 1,k=0,12,...
(kj KI(i —k)!
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Definition 2: Kronecker Product (Graham, 1981).

The kronecker product, denoted by ® ,is an operation on two matrices of arbitrary size resulting in a block
matrix. It gives the matrix of the tensor product with respect to a standard choice of basis.
In the development of the method, let

nx ny .
i 1
U, = 0,08 X" Y" (2)
,=0i, =0

be a polynomial with n;h degree in X and ngq degree in Y is substituted into a given PDE below

LU(X1 y) = f(X, y)l (X! y) e[ax’bx]x[ay’by] (3)
Subject to the supplementary conditions

D, |, U V) =0, (¥), p=1ON, (4)

D, |, U, V) =0, (¥), d=1DN, 5)

Where N, and N,, are positive constants, L. class of linear PDE’s in two variables X and y and D, , D, are
q p

linear partial differential operators in X and Yy respectively.
When (2) is substituted into problem (3) to (5), an over-determined system of linear algebraic equations with
(n, +1)(n, +1) unknown coefficient a; where i, =0()n, and i, = 0(1)n, are formed.

Let 7, = (7,0, Tygres Typn) AN 7, = (70,7550, Ty, ) DE the @,and g, free parameters respectively. A

perturbation term H_ . (X, y) with unknown parameters 7, and 7, is added to the right-hand side of
Xy

equation (3) so as to construct a balanced system of linear algebraic equations for determining the approximate
polynomial solution unxny (x, y) . Then equation (3) and conditions (4) and (5) becomes

Lu,, (xy) = flxy)+H,, (xy), (xy)€la.blx[a,b)] )
Subject to the supplementary conditions
Dyp X=X, unxny (Xv y) = O-yp (Y), p= 1(1)Nx (7)
D, |y=y, Unn, X ¥) =0 (V). a=1DN, (®)

This is defined as the associated tau problem to equations (3) to (5). As with tau-Collocation for ODEs, the
format of perturbation term in equation (6) is chosen as

. by lay.by]
H nxny (Xl y) = gnxny (X1 y) TX 1 Ty )Vx[yanfo]XJrl (X)Vyi]yynyyA(y) (9)
Where V2 (%) and Vy[ay’by] (y) are Catalan polynomials of degree (N, — N, +1) defined on

X,Ny =N, +1 ,ny—Ny+l
[a,,b,]and (n, — N +1) defined on [a,,b, ] respectively.

The formulation of the Tau-collocation method for 2-dimensional PDEs is divided conceptually into two parts.
They are: (i) the formulation of the linear PDE and (ii) the formulation of the conditions of the given problem.
I1l. FORMULATION OF THE LINEAR PDE FOR THETAU PROBLEM

Following Sam and Liu (2004),

M, (6Y) = 2 D (Y, (70 ©0,, (%, Y)%, (75) Wec(A, ) 10)

re=0r,=0

Substituting (10) into equation (6) gives

I, , (x y)vedA,, ) = f(x ¥)+H,, (xy) D)
Where

Hon, 06 Y) = Qoo (6 Y707, WL OOV 5 (V)
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Is the perturbation term of the Catalan polynomial with (n, — N, +1)(n, — N +1) zeros. Collocating (11)
at (X, , yiy),ix =0n, —N, andi, =0(1)n, — N, gives

I'Vec(A,,)=F (12)
where

anny (XO’ yO)

T, . (%, Y1) f (%1 Vo) |

f(Xo, 1)

= anny (X01yny—Ny)
I, (X Yo)

T
Il

(%1 Yo, )

FOG, )

nyny (an—Nx ' yny—Ny)

Equation (6) is now successfully converted to a set of linear algebraic equations.
IV. FORMULATION OF THE CONDITIONS OF THE TAU PROBLEM

The following steps show the formulation of N conditions (7) of the Tau problem (6) to (8), ie

My, = D0 2o n, (70 @6, (X, Y)X, (17 Ivec(A, ) (13)
Substituting (13) into equatiorm) gives
I, o, (. y)VedA, ) =0, (), p=1ON, (14)

[ay.by]
y,ny+1

Let Y, i, =0(n, be the n, +1zeros of the polynomial V . By collocating these n, +1

zeros into equation (14), we have
Tyved(A,, ) =F, 15

where

Iynn, (X1, Yo) oy, (Yo)

I Yihgny (X:l’ y1) O-yl (y1)

Iy = HYN‘xﬂy (Xl’ yn) F, = Gyl (yny)
I1 Yanyny (in yo) Oy, (yo)

<

l_Iy,\,xnxny (XNx ’ ynx) O-yNX (yny)
The following steps show the formulation of condition (8) of the tau problem (6) to (8), let

M, 0Y) = 20 20 0, () @ (X Y)X, (1)) (6

Substituting (16) into equation (8) gives
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M, (%Y, vedA,, ) =0, (x), q=1ON, (17)

Let X;, for i =0(1)n, be the N, +1zeros of the

Polynomial V[ (x) . Collocating the N, +1zeros into

X,n+1
equation (17), we have

TvedA,, )=F 18)

l—lenxny (XO' yl) le (XO)
1_[xlnxny (le yl) O-Xl (Xl)

I, = 1_lenxny (an ' yl) X — le (an)
l_Ixznxny (Xov yz) Oy, (XO)

HXanxny (an 4 ny) O-xNy (an)
By merging equations (12),(15) and (18), we have aresulting system of linear algebraic equations

r E
I, vec(A,, ) =| F, | (19)
FX I:X

Where (I, I, I;)" isa ((n, +1)(n, +1) + N,N )< (n, +1)(n, +1) matrix and (F,F,,F) is a

column vector with (n, +1)(n, +1) + N, N, ) elements. Since there are N, N, redundant linear dependent
equations inside system (19), the rank of the system (19) is now (n, +1)(n, +1) Therefore all of the unknown

coefficients &, ; , i
Xy

=0@n,, and i, =0(L)n,,can be obtained by solving the system of linear algebraic

X

equation (19) through the usual method without finding out free parameters z, and 7, since they have zero as

there coefficients. The tau approximant unxny (X, y) for the solution of problem (3) to (5) can then be obtained.

FORMULATION Of THE NONLINEAR PART USING ADOMIAN’S POLYNOMIAL

The Adomian Polynomial originated from the Adomian decomposition method. The role it plays in the
solution of nonlinear differential equations is to convert the nonlinear terms of the differential equations into a
set of polynomials and it can be used in approximating the solution of nonlinear differential equations with
highly nonlinear terms such as trig and exponential nonlinearity. The following is the process of linearization by
Adomian polynomials.
Consider a two dimensional nonlinear PDE

Lu(x, y) + Fu(x,y)) = f(xy),  (xy) ela,,b]x[a,.b,] (20)

Subject to the supplementary conditions

Dy [, U, y) =0, (y), p=1ON, (1)

D, [y- U, ¥) =0, (¥), q=1DN, (22)
Where F(u(X, Y))is the nonlinear term of the above given problem. Let
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u(x,y) =, Uy (xy), (23)
where U ;, (X, y), i = O(1)ooare the decomposed solution of the problem (20)-(22) and let Un o ) (X, y) be the

numerical approximate solution to U, (X, Y) with degree n, and n inxand y respectively for i = O(1)oo .

The nonlinear term F(u(X, y)) in equation (20) can be written in terms of the Adomian’s polynomials
following the method of ODEs.

Fu(x y)) = ZA Zl 9> Bug, (0 y)

24
a2 (24)

A=0

where A, = , 1 =0(1)o0, are the Adonian’s polynomials. Problem (20)-(22)

d/ll (Z] Oiju(l)(x y)

can now be decomposed into infinitely many sub—problems by the principle of superposition and the problem
becomes

Lue (X, y) = f(x) LUy (X, Y) = —A
D Yo Ix=x u(i+l) (X’ y) =0 (25)

Yo |yey Ug (X, y)=0o, (y) andyD

D,,

U (X, y) =0, (x) B Uiy (X, y) =0
=Yq I =Yq

Where p=1(1)N,, g=11)N, andi=0(1)o .On completion of the linearization process, we can now
handle the linearized equation as the ones treated above for linear PDEs..

111. NUMERICAL EXPERIMENT
3.1 Numerical Examples
Problem 1
Consider a second order 2-dimentional linear PDE
2

oxoy
With supplementary conditions

0
—u(0,y)=y, y €[0,1] (20b)

u(x,y)=4xy+e*, (x,y)e[01]x[0]] (20a)

oy
u(x,0)=2, x €[0]] (20c) The exact
solution of this problem is

2
u(x, y) = x’y? + ye* +y?—y+2

The following steps are the main procedure for the tau-Collocation method
1.Setup the tau-method:

If we take tau degree N, =n, = 2 and use the Catalan basis in the perturbation term anny (X,y), the Tau
problem (20a) to (20c) becomes

2

oy
Where (X, Y) €[0,1] x[0,1] with supplementary conditions

U(x,y) = 4xy +€" +9,(x ¥:7,,7,)C; (X)C; (), (21a)

0
Euzz 0,y)=y, ye[0]] (21b)
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U,(x,0)=2, xe[01] (22c)

1. Formulate the matricesI" and F :

Since
0 0 O, 00 O,

Ay 'y)1 0 0] ®@x'x*)[1 0 0f jvec(A,)
0 20 0 20

=(000012x 02y 4xy)vec(A,)(23)

By collocating the zeros of C,(x) and C,(y) i.e (%,%),(%,%),

(%,%) and (% : %), into equation (23) and the right-hand side of equation (20a), we have

00001202 4
339 1,84001035
2 4 8
000015033 2.28445479
I'= 4 > 8 and F =
000013028 283668785
s 30 3.72551831
00001221
3 3 9
2. Formulate the matrices ', and F,
000
Lyy)100|®
020
I, 0.y)= ;o vec(Ay)
100
(100)0 1 0
00 1

=(0001002y00)vec(A,,) (24)

. . 12 3
By collocating the zeros of C; (y) ie Z,Z,and Z into equation (24) and the right-hand side of equation

(21b)
0 0010 O0O0OBBODO 0.25
[, = 0O 0O0O10O0 1 0 Ojand Fy: 0.50
0 001001500 ~ l0.75

4. Formulate the matrices I', and F, . Since
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100
100)0 1 0| ®

0 0 1
IT, ,, (x,0) = vec(A,) =1L x x> 00000 0)vec(A,,) (25)

1 00
Axx*)0 1 0
0 01

e,on. 12 3
By collocating the zeros of C;(X) i.e Z,Zand 2 into equation (25) and the right-hand side of equation

(21c), we have

1 11 0 00O0O0OTO
4 16 2
Ir,=|1 11 0 00 OO OjandF,=|2
2 4 — 1,
1 339 0 00O0O0OTO
4 16

5. Formulate the system of linear equation and solve it to obtain the Tau approximant.
By combining matrices I',I';and I, and column vectors F, F,and F, we obtain

00001%0%%1.84001035
2 4 8
0000120 : $ 22845479
4 2 8 ALLQT
00001%02 % 283668
4 4 16 o+
00001304 2 37255181
000100200 0.25
00010010 0 0.5
ooowo%oo 0.75
{ I |
144000000 2
132000000 2
3 9
1322000000 2

éy solving the above matrix using the Gauss Elimination Method we obtain
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—100000000 2.0 |
010000000 0
001000000 0
000100000 0
000010000 084327613
000001000 0.8284346700
000000100 0.5
000000010 0
000000001 0.9998704576
_000000000 0 Js)

Note that the last row of matrix is a zero row which is the redundant linear dependent equation generated from
the nearby conditions (21b) and (21c) during the collocation process. From matrix (26) we can obtain the Tau
approximant

U,, (X, y) = 2+0.84328 xy +0.82843 xy + 0.5y* +0.07009 y*x +0.99987 x*y* (27)
The dimension of the matrix is determined by the degree of Catalan polynomial used. These obtained
values of aixiy are substituted in (2) to obtain the required approximate solution.
We then compare the errors of the new method with that of Sam and Liu (2004). , The error is defined as

Error = |Ug. (X y) —U;; | (28)

If we take tau degree N, =N, = 3 and use Catalan polynomial basis in the perturbation term Hn o, We obtain
X'y
the Tau approximant

Ugy (X, Y) = 2+1.022912 yx +0.418643 yx* +0.276221 yx* + 0.5y* + y*x? (29)

Problem2:
Consider a nonlinear PDE
2

LU0t = U0 - D) = (D, (1) <[011x[01] (30)
Where

f(x,t)=e'sinzx(1+ 7% —e'sinax) (31)
With initial conditions

u(0,t) =0 (32)

uLt)=0, te[0]] (33)

The exact solution of the problem is

u(x,t) = e sin zx
The Adomian’s polynomial technique of linearization can also be applied to the problem above and we obtain
the following as its polynomials for values of kK =1,2,3,...,

d 2
A =[&uo(xﬂ
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A = 2(—u (x)) u, (x)

Az{iul(x)j . [ ' (x)j 0, ()

d
A = 2(—u (x)j u, (x) + Z(d—u (x)) u,(x)
The Tau-collocation method can now be applied directly to this problem without any pre-approximation to

the right hand sides of both problem and its conditions. Going through the same process of formulation as in
examples (1) above we arrive at a result displayed on table 3.

Table 1: Comparing the absolute Errors in the new method to Errors in Sam (2004) for example 1

At Tau degree N, =n, =2

At Tau degree N, =n, =3

X y New Method Sam(2004) New Method Sam (2004)
0.0 0.0 0.000000E-00 0.000000E-00 0.000000E-00 0.000000E-00
0.1 0.1 5.685875E-03 5.685343E-03 2.460000E-04 2.456325E-04
0.2 02 1.936212E-03 1.925437E-03 2.694000E-03 2.765321E-03
0.3 0.3 3.630506E-03 2.225205E-03 9.505000E-03 9.670361E-03
04 04 5.230889E-02 2.927365E-02 2.223470E-02 2.132537E-02
05 05 6.374501E-02 8.644801E-03 4.246700E-02 5.231860E-03
06 0.6 6.764645E-02 1.655559E-02 7.076700E-02 5.209126E-02
0.7 0.7 6.178942E-02 2.554448E-02 1.078840E-02 1.024871E-02
0.8 0.8 4.479063E-02 3.336561E-02 1.542930E-02 1.664588E-01
09 09 1.621582E-02 3.798617E-02 2.004120E-01 2.022398E-01
1.0 1.0 2.329817E-02 3.455992E-01 2.767270E-01 2.523652E-01

Table 2: Comparing the absolute Errors in the new method to Errors in Sam (2004) for example 1
At Tau degree n, =n, =4 At Tau degree N, =N, =3

X y New Method Sam (2004) New Method Sam(2004)
0.0 0.0 0.000000E-00 0.000000E-00 0.000000E-00 0.000000E-00
0.1 01 1.675431E-05 1.675722E-05 1.321001E-06 1.323043E-06
0.2 0.2 3.542163E-05 3.546254E-05 2.061424E-06 2.062190E-06
0.3 03 2.435630E-04 2.413268E-04 7.182013E-05 7.016920E-05
04 04 7.841066E-03 6.893126E-03 3.325445E-04 3.248903E-04
05 05 6.432502E-03 4.217657E-04 8.320876E-04 7.960231E-05
06 0.6 8.123868E-03 8.143256E-03 5.321084E-04 5.256174E-04
0.7 07 7.216987E-03 7.113249E-03 2.653452E-04 2.545438E-04
0.8 0.8 1.528701E-02 1.600821E-02 3.132505E-03 3.234320E-03
09 09 1.467290E-02 1.463219E-02 2.333333E-03 2.321546E-03
1.0 1.0 1.031453E-02 1.042945E-02 9.216589E-03 9.235672E-03
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Table 3: Comparing the absolute Errors in the new method to Errors in Sam (2004) in example 2

At Tau degree N, =N, =3

At Tau degree N, =n, =4

i, I NewMethod  Sam(2004) New Method Sam (2004)

00 00 0.000000E-00  0.000000E-00  0.000000E-00 0.000000E-00
01 0.1 3215875E-07  6.385343E-07  4.220000E-09 5.456325E-09
02 02 1036212E-07  3.925437E-06  1.654000E-09 0.765321E-08
03 03 4530506E-06  5.225205E-06  6.525000E-08 9.300361E-08
0.4 04 1200889E-06  0.927365E-05  1.513470E-08 2.150537E-08
05 05 3574501E-05  1.644801E-05  5.346700E-07 7.111860E-07
06 0.6 5304645E-05  2.455550E-04  6.286700E-07 8.319126E-07
07 0.7 0548942E-04  4.554448E-04  3.058840E-07 1.754871E-06
0.8 08 3.479063E-04  5.336561E-04  0.702930E-06 3.534588E-06
09 09 3551582E-03  6.700617E-03  1.114120E-05 4.522398E-05
10 10 3.029817E-02  5.395092E-02  0.217270E-04 1.433652E-04

V. DISCUSSION OF RESULTS

The approximate solutions obtained from these experiments shows the efficiency of the method. It is
observed from the tables that the result obtained from the Catalan tau collocation method converges faster as the
degree of tau increases with a decrease in step number.Generally, the performance of our method as seen on the
tables above, are superior to those from tau collocation method using Chebyshev as a polynomial basis function
by Sam and Liu (2004) for the same degree of tau and step length.

Tables 1land 2 are the solution for 2-dimentional linear PDEs at varied degrees of tau. From the tables the
new collocation approach is seen competing favourably and even better at some instances to that of Sam (2004).

Table 3 and 4 are the result for solving 3-dimentional linear PDE problem. There is also an increasing level
of accuracy with a decrease in step length at varied degree of tau. The performance of Catalan Polynomial as a
basis function here is also quite commendable if one should consider Chebyshev polynomial being a standard
and most widely used and acceptable basis function.

V. CONCLUSION
From the presentations above, we have been able to develop a method using Catalan polynomial basis to
solve partial differential equations directly, this is an attempt to introduce the use of Catalan polynomials into
the numerical solution of partial differential equations directly and the result competes well with Chebyshev
polynomial basis function which is a widely used and acceptable polynomial basis function.
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